CS M148: Predicting
DoorDash Delivery
Time

9

DOORDASH

Group 12 - Abhinav Amanaganti (1763), Harris Song (8015),
Ethan Maldonado (4340), Afnan Khawaja (2648)

Introduction (Ethan)

Objective: Our project aims to enhance the accuracy of Estimated Time of Arrival
(ETA) provided by the Doordash app for its deliveries

Importance and Relevance: Accurate ETAs significantly improve user satisfaction
by setting realistic expectations for delivery times. This can lead to higher customer
retention and better reviews for Doordash.

Motivation: Accurate delivery times are crucial for both customer satisfaction and
operational efficiency. Timely deliveries ensure higher customer satisfaction and
repeat business

Problem Statement (Ethan)

Problem: The current ETA predictions provided by Doordash may not always be
reliable, leading to customer dissatisfaction.

Goal: Develop a predictive model to estimate delivery times more accurately using
various features such as the number of on-shift dashers, total items in the order,
store category, and market ID.

DoorDash Reviews

WHAT CAN THIS BRAND MOST IMPROVE?

I have had it with cold food and no one will help | order
through your website every day

Danielle Thompson ‘ 1.3 Rating 21,807 Reviews

“ 9 DOORDASH[-‘

DoorDash suck. The food is always cool once the dasher made it to you.

[1] https://www.reviews.io/company-reviews/store/doordash

Data Source: Kaggle: Doordash ETA Prediction (Ethan)

. # subtotal
Time Features Order Features)

total value of the order submitted (in cents)

@ market_id (d total items

[created_at(graphshown) O subtotal (graph shown)
@ actual_delivery_time d num_distinct_items

d min_item_price

Qa

Store Features max_item_price

Q Store_id 27k
A store_primary_category = Market Features
@ order_protocol EI total_onshift_dashers

total_busy_dashers

B created_at
tOta I_O u tSta nd | ng_O I‘d ers Timestamp in UTC when the order was submitted by the consumer to DoorDash. Note this timestamp is in UTC

kaggle .

Observation: Note how some
data (like subtotal) follow a
right-skewed distribution.

2014-10-18 2015-02-17

Data Collection & Preprocessing (Afnan)

- Delivery Time Calculation: order_hour

"actual_delivery_time" -
"created at"

- Handling Missing Data: Fill NA
columns to retain data

- Data Splitting: 80% training, 20%
testing

- Heatmap Analysis: Sklearn for
variable correlation (shown right)

- Next Steps: Optimize for
computational efficiency =

order_day_of week

delivery_time

store id

market id
total items

order_protocol

IEEER
pitid

Data Validation (Afnan)

= ta. f 1 (mef ="ffill")
"66 ['created_at'] = o ‘created_at'])

00,0 ['actual_delivery_time'] = > ["actual_delivery_time'])

['delivery_duration'] = (['actual_delivery_time'] - ['created_at']).o 0
. samp =0.1, =42)
«(’b\ = ['market_id', 'store_id', 'order_protocol', 'total_items', 'subtotal’,
0,0 ‘num_distinct_items', 'min_item_price', 'max_item_price’,
0 'total_onshift_dashers', 'total_busy_dashers', 'total_outstanding_orders’,

% 'estimated_order_place_duration', 'estimated_store_to_consumer_driving_duration']

t = 'delivery_duration’
(X, vy, =0.2,
int("Preprocessing Complete. Data is ready for model training.")

Matches percentage from Homeworks

el1ep ||V

Some Relevant Figures (Afnan)

Number of Orders by Hour of Day

Number or Oraers

0 1 2 3 4 5 6 7 8 14 15 16 17 18 19 20 21
Hour of Day

To sanity-check the data-set and for some observations

Distribution of Orders by Day of the Week
Sunday

Saturday
Monday
Friday
Tuesday
Thursday

Wednesday

store_primary_category

american

All Algorithms used (Abhinav)

Chosen Algorithms:

- Decision Tree

- Random Forest

- Linear Regression
- KNN

- SVM

Pictured: Graphs of SVM, with the Feature Coefficients
Actual / Predicted, and Residuals. Residuals is particularly
useful to analyze any bias (there is none in this case).

Actual values

11525 4

8965 -

6406

3846

1286 1

SVM - Prediction Error Analysis

SVM - Actual vs Predicted

SVM - Residual vs Predicted

Residuals (actual - predicted)

8000

6000

4000 A

2000 A

o

.i{‘.*;:*-

.J__.Q_.n__'_______.
°

1286 3846 6406 8965 11525
Predicted values

2000 2500 3000 3500 4000
Predicted values

total_onshift_dashers
total_busy_dashers

order_protocol

min_item_price

max_item_price

total_items

num_distinct_items
estimated_order_place_duration

subtotal
estimated_store_to_consumer_driving_duration

total_outstanding_orders

SVM Feature Coefficients

o
S
8
L
S
8
°

100

200

]
8
8
3
8
8

Coefficient Value

Decision Trees (Abhinav)

Used due to its easy interpretation,

though it tends to overfit 0

MAE: 841.2 seconds
MSE: 1151088.3 seconds?

Predicted Delivery Time (minutes)

.tree import

S) 0

= .predict(

Decision Tree: Actual vs Predicted Delivery Time

60

20 A

20 40 60 80
Actual Delivery Time (minutes)

Count in bin

Decision Tree Analysis (Abhinav)
Methodology

Scatter Plot:
- Points are fairly clustered around diagonal line; reasonable alignment of
predictions with actual values
- However, noticeable spread of points especially as actual delivery time increases =
worse predictions for longer delivery times
Prediction Error:
- Underestimation for high ground truth values
- Overestimation for lower ground truth values

Pros: Cons:
- Captures non-linear relationship - High variance = unstable model
betyveen Ol features an.d - Bad performance for continuous
delivery time target variable data, which we are dealing with

- - No need for Feature Scaling

Random Forest (Abhinav)

Multiple Decision Trees, though
more computationally expensive

MAE: 600.3 seconds
MSE: 580,845.6 seconds?

@
from .ensemble import

Initialize the model

‘e=42)

Fit the model
St ’)

Get predictions
= el.predict(

Calculate regression metrics

{

(

Predicted Delivery Time (minutes)

80 A

60 A

20 A

Random Forest: Actual vs Predicted Delivery Time

20 40 60 80
Actual Delivery Time (minutes)

100

80

60

r 40

20

Count in bin

Random Forest Analysis (Abhinav)

Methodology

Scatter Plot: Points are more tightly clustered around diagonal line
compared to decision tree model->indicates more accurate predictions
Spread: Random Forest Model showcases less spread + fewer extreme
outliers also demonstrating better predictive performance

Pros: Cons:
- Robust + stable - Model is more complex and less
- Random forest reduces interpretable, especially for

overfitting by averaging higher-level datasets like this one
predictions of multiple - Requires tuning of many
decision trees. hyperparameters for optimal

- Reduces overfitting by utilizing performance, which is hard on a local

bootstrap samples + random setup

subsets of features

Linear Regression (Harris)

Feature

total _

total_busy_dashers

estimated_order_place_duration -

estimated_store_to_consumer_driving_duration

total_outstanding_orders

|
|
I
i
—

Linear Regression Coefficients

onshift_dashers _
total_items - -
|

store_id
max_item_price -
min_item_price -

subtotal -

order_protocol

o
N
=]
&
o
o

-40 -20
Coefficient Value

Density

Density plot, bandwith=scott

0.0008 - —— Actual Delivery Times
—— Linear-Regression Predicted Delivery Times
0.0006 -
0.0004
0.0002 A
0.0000 A

—20000 —10000 0 10000 20000 30000 40000 50000

Predicted

Linear Regression - Actual vs Predicted

5000 -
4000 A
3000 1 o
2000 A
1000 1
0 5000 10000 15000 20000 25000 30000 35000
Actual

MAE: 716.9 seconds
MSE: 1,236,274.4 seconds?

Conclusion & Individual Case Study (Harris)

Mathematical Approach: Visual Inspection:
Algorithm MAE Density plot of DoorDash Delivery Time Actual vs. Predicted
(seconds) Pp—y —— Actual Delivery Times
’ — Linear-Regression Predicted Delivery Times
Random Forest 601.8 0.0008 - —— Decision-Tree Predicted Delivery Times
—— Random-Forest Predicted Delivery Times
K-NN 700.8 2 0.0006 - —— SVM Predicted Delivery Times
 —
o 1
Linear Regression 716.9 s
0.0002 A
SVM 772.3
0.0000
Decision Tree 841.2 0 1000 2000 3000 4000 5000 6000 7000 8000
Delivery Time (Seconds)

Conclusion & Individual Case Study (Harris)

Example using Random Forest:

created_at actual_delive

ry_time

2015-02-06 2015-02-06
22:24:17 23:27:16
max_item_pr total_onshift
ice _dashers

1239.0 33.0

store_primary_category
american

total_busy_dashers

total_items
4.0

total_outstan
ding_orders

21.0

subtotal num_distinct_items min_item_price
3441.0 4.0 557.0
estimated_ estimated_store_to_cons delivery_time
order_place umer_driving_duration
_duration
446.0 861.0 62.983333

print(

Random Forest Prediction:

62.09466667 minutes!

.predict(

Takeaways (Harris)

- Relatively Accurate Predictions

- Long tail, coined by Doordash, is a phenomenon
with no clear outlier but ~10% data skewed!"

Asymmetric MSE loss function:

S |-

n
Z la = 1 g0e)—s00)<0 | (8(6:) — 8(x:))°
i=1

with ae(0,1) being the parameter we can adjust to change the degree of
asymmetry

Our data closely matches the analysis @Doordash!

(Top Right: From Doordash Engineering!, Bottom Right: Our Analysis)

Density

0.0010 A

0.0008

0.0002 A

0.0000 A

0.0006 -

0.0004 A

/

Long Tail

Histogram for Actual Delivery Duration (Minutes)

Density plot of DoorDash Delivery Time Actual vs. Predicted

—— Actual Delivery Times
— Linear-Regression Predicted Delivery Times
—— Decision-Tree Predicted Delivery Times
—— Random-Forest Predicted Delivery Times
—— SVM Predicted Delivery Times

0 1000 2000 3000 4000 5000
Delivery Time (Seconds)

[1] https://doordash.engineering/2021/04/28/improving-eta-prediction-accuracy-for-long-tail-events/

6000 7000

8000

