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Introduction (Ethan)

Objective: Our project aims to enhance the accuracy of Estimated Time of Arrival
(ETA) provided by the Doordash app for its deliveries

Importance and Relevance: Accurate ETAs significantly improve user satisfaction
by setting realistic expectations for delivery times. This can lead to higher customer
retention and better reviews for Doordash.

Motivation: Accurate delivery times are crucial for both customer satisfaction and
operational efficiency. Timely deliveries ensure higher customer satisfaction and
repeat business



Problem Statement (Ethan)

Problem: The current ETA predictions provided by Doordash may not always be
reliable, leading to customer dissatisfaction.

Goal: Develop a predictive model to estimate delivery times more accurately using
various features such as the number of on-shift dashers, total items in the order,
store category, and market ID.

DoorDash Reviews

WHAT CAN THIS BRAND MOST IMPROVE?

I have had it with cold food and no one will help | order
through your website every day

Danielle Thompson ‘ 1.3 Rating 21,807 Reviews

“ 9 DOORDASH[-‘

DoorDash suck. The food is always cool once the dasher made it to you.

[1] https://www.reviews.io/company-reviews/store/doordash



Data Source: Kaggle: Doordash ETA Prediction (Ethan)
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Data Collection & Preprocessing (Afnan)

- Delivery Time Calculation: order_hour

"actual_delivery_time" -
"created at"

- Handling Missing Data: Fill NA
columns to retain data

- Data Splitting: 80% training, 20%
testing

- Heatmap Analysis: Sklearn for
variable correlation (shown right)

- Next Steps: Optimize for
computational efficiency =
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Data Validation (Afnan)

= ta. f 1 (mef ="ffill")
"66 ['created_at'] = o ‘created_at'])

00,0 ['actual_delivery_time'] = > ["actual_delivery_time'])

['delivery_duration'] = ( ['actual_delivery_time'] - ['created_at']).o 0
. samp =0.1, =42)
«(’b\ = ['market_id', 'store_id', 'order_protocol', 'total_items', 'subtotal’,
0,0 ‘num_distinct_items', 'min_item_price', 'max_item_price’,
0 'total_onshift_dashers', 'total_busy_dashers', 'total_outstanding_orders’,

% 'estimated_order_place_duration', 'estimated_store_to_consumer_driving_duration']

t = 'delivery_duration’
(X, vy, =0.2,
int("Preprocessing Complete. Data is ready for model training.")

Matches percentage from Homeworks
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Some Relevant Figures (Afnan)

Number of Orders by Hour of Day
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To sanity-check the data-set and for some observations
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All Algorithms used (Abhinav)

Chosen Algorithms:

- Decision Tree

- Random Forest

- Linear Regression
- KNN

- SVM

Pictured: Graphs of SVM, with the Feature Coefficients
Actual / Predicted, and Residuals. Residuals is particularly
useful to analyze any bias (there is none in this case).
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Decision Trees (Abhinav)

Used due to its easy interpretation,

though it tends to overfit 0

MAE: 841.2 seconds
MSE: 1151088.3 seconds?
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= .predict(
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Decision Tree Analysis (Abhinav)
Methodology

Scatter Plot:
- Points are fairly clustered around diagonal line; reasonable alignment of
predictions with actual values
- However, noticeable spread of points especially as actual delivery time increases =
worse predictions for longer delivery times
Prediction Error:
- Underestimation for high ground truth values
- Overestimation for lower ground truth values

Pros: Cons:
- Captures non-linear relationship - High variance = unstable model
betyveen Ol features an.d - Bad performance for continuous
delivery time target variable data, which we are dealing with

- - No need for Feature Scaling



Random Forest (Abhinav)

Multiple Decision Trees, though
more computationally expensive

MAE: 600.3 seconds
MSE: 580,845.6 seconds?

@
from .ensemble import

# Initialize the model

‘e=42)

# Fit the model
St ’ )

# Get predictions
= el.predict(

# Calculate regression metrics
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Random Forest Analysis (Abhinav)

Methodology

Scatter Plot: Points are more tightly clustered around diagonal line
compared to decision tree model->indicates more accurate predictions
Spread: Random Forest Model showcases less spread + fewer extreme
outliers also demonstrating better predictive performance

Pros: Cons:
- Robust + stable - Model is more complex and less
- Random forest reduces interpretable, especially for

overfitting by averaging higher-level datasets like this one
predictions of multiple - Requires tuning of many
decision trees. hyperparameters for optimal

- Reduces overfitting by utilizing performance, which is hard on a local

bootstrap samples + random setup

subsets of features



Linear Regression (Harris)
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Conclusion & Individual Case Study (Harris)

Mathematical Approach: Visual Inspection:
Algorithm MAE Density plot of DoorDash Delivery Time Actual vs. Predicted
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Conclusion & Individual Case Study (Harris)

Example using Random Forest:

created_at actual_delive

ry_time

2015-02-06  2015-02-06
22:24:17 23:27:16
max_item_pr total_onshift
ice _dashers

1239.0 33.0

store_primary_category
american

total_busy_dashers

total_items
4.0

total_outstan
ding_orders

21.0

subtotal num_distinct_items min_item_price
3441.0 4.0 557.0
estimated_  estimated_store_to_cons delivery_time
order_place umer_driving_duration
_duration
446.0 861.0 62.983333

print(

Random Forest Prediction:

62.09466667 minutes!

.predict(



Takeaways (Harris)

- Relatively Accurate Predictions

- Long tail, coined by Doordash, is a phenomenon
with no clear outlier but ~10% data skewed!"

Asymmetric MSE loss function:

S |-

n
Z la = 1 g0e)—s00)<0 | (8(6:) — 8(x:))°
i=1

with ae(0,1) being the parameter we can adjust to change the degree of
asymmetry

Our data closely matches the analysis @Doordash!

(Top Right: From Doordash Engineering!, Bottom Right: Our Analysis)
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[1] https://doordash.engineering/2021/04/28/improving-eta-prediction-accuracy-for-long-tail-events/
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